Oxford Partial Knee

A Definitive Implant

With over 35 years’ clinical experience, the Oxford Partial Knee is the most widely used and proven partial knee system in the world.

Tibial Component
Anatomical shape for optimal bone coverage
Femoral Component
• Conforming, spherical design minimizes contact stress throughout entire range of motion
• Curved inner geometry for minimal bone removal

Mobile Meniscal Bearing
• Only true mobile meniscal bearing knee system approved for use in the U.S.
• Mobile bearing designed to remain fully congruent with femoral component throughout entire range of motion
• Proven wear resistance with ArCom Direct Compression Molded polyethylene

Survivorship
- 94% at 15 years
- 91% at 20 years

A multi-center study found that Oxford PKR patients were 1.8 times more likely to report that their knee felt normal and 2.7 times more satisfied with their ability to perform activities of daily living compared to TKA patients
A survey showed that Oxford partial knee patients are happier with their knee replacements than total knee patients
A multi-centre study demonstrated decreased morbidity and complications of PKA compared to TKA
Proven, safe and reproducible technique
Better functionality and more natural motion compared to TKA
Best-in-class continuous education program
The Oxford Partial Knee System continues to advance partial knee arthroplasty with Microplasty Instrumentation. This instrumentation platform provides surgeons with innovative tools to help with ease of use, precision, efficiency and reproducibility for each patient:

- Proprietary tibial resection guide that uses patients’ normal MCL tension to determine level of tibial resection
 - The soft-tissue referencing Microplasty instrumentation references the posterior femoral condyle to set the amount of tibial resection.

- Spherical mill and spigots provide a simplified approach to balancing the flexion and extension gaps
 - Size specific femoral instrumentation for precise 1 mm incremental bone removal

- The Femoral Drill Guide linked to the IM rod provides for accurate and reproducible alignment

- The Anti-Impingement guide is designed to help surgeons minimize anterior bearing impingement with precise guided instrumentation
Oxford Partial Knee and Today’s Fixed Bearing Partial Knee Replacements

The Oxford Partial Knee has demonstrated 91% survivorship at 20 years.²

- Because of its congruent, forgiving design, the Oxford has demonstrated ultra low polyethylene wear in multiple retrieval studies¹⁴,¹⁵

- No significant correlation exists between preoperative evidence of PFJ (Patellofemoral Joint) disease** and poor outcomes with Oxford Partial Knee¹⁶,¹⁷

One published study found the Oxford Partial Knee restored joint kinematics better than one fixed bearing partial knee replacement design, reporting the following:

- Larger and incremental increase in tibial internal rotation¹⁸

- More consistent AP translation of the medial femoral condyle¹⁸

- More consistent AP translation of contact point¹⁸

**Patellofemoral joint damage must be limited to (or greater on) the medial facets
<table>
<thead>
<tr>
<th>Sources</th>
<th>Type</th>
<th>N</th>
<th>Survivorship</th>
</tr>
</thead>
<tbody>
<tr>
<td>Berend, M. E. Mobile Bearing Partial Knee Arthroplasty</td>
<td>Presentation</td>
<td>2,029 knees</td>
<td>98.0% at a mean of 78 months</td>
</tr>
<tr>
<td>Bergeson, AG et al. Medial mobile bearing unicompartmental knee arthroplasty early survivorship and analysis of failures in 1000 consecutive cases. Journal of Arthroplasty. 2013</td>
<td>Publication</td>
<td>1,000 knees</td>
<td>95.2% at a mean of 44 months</td>
</tr>
<tr>
<td>Gondusky, Joseph S., et al. “Day of Surgery Discharge after Unicompartmental Knee Arthroplasty: An Effective Perioperative Pathway.” The Journal of arthroplasty (2013).</td>
<td>Publication</td>
<td>160 knees (73.1% of implants were Oxford)</td>
<td>98.75% at a mean of 24 months</td>
</tr>
<tr>
<td>Jones, L et al. 10 year survivorship of the medial oxford unicompartmental knee arthroplasty. A 1000 patient non-designer series- the effect of surgical grade and supervision. Osteoarthritis and Cartilage. 2012;20:S290-S291</td>
<td>Publication</td>
<td>1,085 knees</td>
<td>91% at 10 years (cumulative survival)</td>
</tr>
<tr>
<td>Keys GW, Ul-Abiddin Z, Toh EM. Analysis of first forty Oxford medial unicompartmental knee replacements from a small district hospital in UK. Knee. 2004; 11:375-377</td>
<td>Publication</td>
<td>40 knees</td>
<td>100% at a mean of 7.5 years</td>
</tr>
<tr>
<td>Lim, HC et al. Oxford phase 3 unicompartmental knee replacement in Korean patients. JBJS. 2012 Aug; 94-B(8)</td>
<td>Publication</td>
<td>400 knees</td>
<td>94% at 10 years (cumulative survival)</td>
</tr>
<tr>
<td>Lloyd, JM et al. Medium term results of per-operative knee arthroscopy in confirming suitability for unicompartmental arthroplasty. The Knee. 2012;908-912</td>
<td>Publication</td>
<td>151 knees</td>
<td>97.5% at a mean of 5.1 years</td>
</tr>
<tr>
<td>Sources</td>
<td>Type</td>
<td>N</td>
<td>Survivorship</td>
</tr>
<tr>
<td>---------</td>
<td>------</td>
<td>---</td>
<td>--------------</td>
</tr>
<tr>
<td>Matharu, G et al. The Oxford medial unicompartmental knee replacement: survival and the effect of age and gender. The Knee. 2012; 913-917</td>
<td>Publication</td>
<td>459 knees</td>
<td>93% at 8 years (cumulative survival)</td>
</tr>
<tr>
<td>Pandit, H et al. Minimally invasive Oxford phase 3 unicompartmental knee replacement. Results of 1000 cases. J Bone Joint Surg Br. 2011;93-B:198-204</td>
<td>Publication</td>
<td>1,000 knees</td>
<td>96% at 10 years (cumulative survival)</td>
</tr>
<tr>
<td>Sun, PF and Jia YH. Mobile bearing UKA compared to fixed bearing TKA: a randomized prospective study. The Knee. 2012;19:103-106</td>
<td>Publication</td>
<td>28 knees</td>
<td>100% at a mean of 52 months (after adjusting for learning curve)</td>
</tr>
<tr>
<td>Svard UC, Price AJ. Oxford medial unicompartmental knee arthroplasty. A survival analysis of an independent series. JBJS. 2000</td>
<td>Publication</td>
<td>124 knees</td>
<td>95.0% at 10 years (cumulative survival)</td>
</tr>
</tbody>
</table>
References

* Study included Oxford Partial Knees as well as other 'non-Biomet' partial knees

1. Data on file
6. Study by researchers at Washington University in St. Louis, Missouri, US. Portions of study funded by Biomet. Determined based on adjusted odds ratio calculation.
36. Sun, PF and Jia YH. Mobile bearing UKA compared to fixed bearing TKA: a randomized prospective study. The Knee. 2012;19:103-106

All trademarks herein are the property of Biomet, Inc. or its subsidiaries unless otherwise indicated.

This material is intended for the sole use and benefit of the Biomet sales force and physicians. It is not to be redistributed, duplicated or disclosed without the express written consent of Biomet.

For product information, including indications, contraindications, warnings, precautions and potential adverse effects, see the package insert and Biomet’s website.

The Oxford Partial Knee is intended for osteoarthritis or avascular necrosis limited to the medial knee compartment and is to be implanted with bone cement. The Oxford Knee is not indicated for use in the lateral compartment or for patients with ligament deficiency. Potential risks include, but are not limited to, loosening, dislocation, fracture, wear, and infection, any of which can require additional surgery. For complete prescribing information, see the package insert and www.biomet.com.

Responsible Manufacturer
Biomet UK Limited
Waterton Industrial Estate
Bridgend
CF31 3XA
United Kingdom

www.biomet.com