Nexel®
Total Elbow

Built on a tradition of excellence.
The Nexel® Total Elbow is built on the foundation of the original, market-leading Coonrad/Morrey Total Elbow, with more than 30 years of clinical history. In combination with our proprietary Vivacit-E® polyethylene bearings and advances in instrumentation the Nexel Total Elbow makes for a great choice in elbow replacement.

Significant improvement in wear and durability.¹⁻⁴

- Vivacit-E® bearings have highly cross linked polyethylene that is uniformly blended with Vitamin E and designed to prevent delamination, maximize oxidative stability, minimize wear and improve mechanical properties.*
- Semi-conforming, thicker bearing design reduces edge loading and stress, maximizes contact area to distribute joint reaction forces.**
- Robust Co-Cr linkage system enhances linkage durability without applying compressive loads to screws.

*N Compared to conventional polyethylene
** Compared to Coonrad/Morrey Total Elbow (C/M)

Clinically-proven stem design heritage.¹⁰

- Intramedullary stem geometry and anterior humeral flange is maintained from the C/M Total Elbow.
- Humeral component finished with Ti-plasma spray to promote fixation and improve stem strength.
- Low Profile A/P design to minimize soft tissue interference.
Modernized, easy-to-use instrumentation designed to improve efficiency and repeatability.

- Humeral preparation system is designed to reduce stress risers through contained, circular resection and to improve precision with enhanced cut-guide stability.
- Rasp tooth geometry with a diamond-cut pattern designed for a more efficient canal preparation.
- Specially designed flexible ulnar reamers included to allow for easier ulnar canal preparation.

Vivacit-E HXPE provides exceptional oxidative stability and wear performance in laboratory testing.*

The Nexel Total Elbow utilizes Vivacit-E Highly Cross-Linked Polyethylene bearings, a first in total elbow. Vivacit-E HXPE is significantly superior to conventional polyethylene in wear performance, without a compromise in mechanical strength seen in traditional cross-linked polyethylenes. Additionally, due to grafting of Vitamin E to the polyethylene matrix, Vivacit-E HXPE has exceptional long-term oxidative stability to limit delamination due to residual free radicals. In the end, this enables predictable bearing integrity through the life of the implant.6-9

*Laboratory testing is not necessarily indicative of clinical results.
References

1) Zimmer ZRR_WA_2552_12Rev2*
2) Zimmer ZRR_WA_2407_11Rev2 *
3) Zimmer ZRR_WA_2542_12Rev2*
4) Zimmer ZRR_WA_2598_12*
5) Zimmer ZRR_WA_2409_11*
11) Zimmer ZRR_WI_1222_12*
12) Zimmer ZRR_WI_2441_11 Rev 1*

*Internal Laboratory test results

This material is intended for health care professionals and the Zimmer Biomet sales force only. Distribution to any other recipient is prohibited. All content herein is protected by copyright, trademarks and other intellectual property rights owned by or licensed to Zimmer Biomet or its affiliates unless otherwise indicated. This material must not be redistributed, duplicated or disclosed, in whole or in part, without the express written consent of Zimmer Biomet.

Check for country product clearances and reference product specific instructions for use. For complete product information, including indications, contraindications, warnings, precautions, and potential adverse effects, see the package insert, zimmerbiomet.com, or contact your local Zimmer Biomet representative.

Not for distribution in France.

©2016 Zimmer Biomet