Histological Investigations of Recellularization, Revascularization, Adhesions of DermaSpan™ Acellular Dermal Matrix

DermaSpan™ Acellular Dermal Matrix, processed by Tissue Banks International (TBI), is a collagen matrix allograft manufactured from donated human skin allograft with no cellular elements present. The allograft has undergone a series of aseptic cleaning steps that remove the cellular components, leaving the collagen matrix intact. The advantage of a collagen scaffold with the cellular components absent is dramatically reduced immunogenicity while making available the scaffold for host-cell remodeling into the graft.\(^2\)\(^3\)

DermaSpan™ matrix has a dermal side which supports recellularization and subsequent revascularization and a basement membrane side to which the host tissue adheres at a slower rate. This has been shown to help prevent adhesions in animal studies.\(^4\) Unlike the majority of other tissue banks’ Acellular Dermal Matrix (ACD), DermaSpan™ matrix is provided sterile at a validated Sterility Assurance Level (SAL) of \(10^{-6}\).

DermaSpan™ matrix can be used in various surgical practices, for the repair or replacement of damaged or inadequate integumental tissue. DermaSpan™ matrix can also be used for supplemental support, protection, reinforcement or covering of tendon. The DermaSpan™ matrix acts as a scaffold, into which the host cells can penetrate and remodel the allograft, replacing it with healthy, viable tissue.

TBI’s exclusive proprietary methodology for terminal sterilization by precision gamma irradiation prevents irradiation overdosing. This process achieves a SAL of \(10^{-6}\), as validated Method \(VD_{\text{max}}\)\(^15\) (ANSI/AAMI/ISO 11137-1 & 2: 2006, Sterilization of Healthcare Products – Radiation).

Utilizing standard histological staining techniques as well as transmission electron microscopy (TEM), the collagen structure and the elastin fibers were qualitatively assessed between native human skin, non-gamma irradiated human ACD and gamma irradiated human ACD as shown in Figures 1, 2, and 3.

Hematoxylin and eosin stain micrographs of normal human skin, unirradiated ACD & gamma irradiated ACD are shown in Figures 1a, 1b, 1c. Note that the collagen structure is similar in all three specimens. Comparing the normal human skin to the irradiated ACD shows the absence of cellular components, i.e. there are no visible intact cells remaining after the ACD processing.

Similar micrographs for the same three groups are shown in Figures 2a, 2b, 2c except that these are Verhoeff-Van Gieson Staining which shows that the elastin fibers of acellular dermal matrix are similar for normal human skin, unirradiated and irradiated ACD.

TEM, shown in Figures 3a, 3b, 3c, was utilized to qualitatively assess the collagen fibril structure. These images show normal human skin, unirradiated ACD & gamma irradiated ACD. The collagen structure does not exhibit differences between the three.

Summary
In summary, DermaSpan™ Acellular Dermal Matrix shows a similar histology of the collagen structure and elastic fibers when compared to normal human skin and unirradiated ACD. Furthermore, the DermaSpan™ matrix shows an absence of intact cells following processing. Maintaining a collagen structure can help support new tissue ingrowth and can assist as a tissue regeneration scaffold.\(^5\) Elastin fibers provide elasticity to the allograft allowing it to stretch while supporting tendon or wound coverage.\(^6\) Finally, the absence of intact cells discourages an immunogenic response.
**Figure 1a, 1b, 1c—H&E Stain Micrographs:**
Normal human skin, unirradiated ACD & gamma irradiated ACD. Histology of the collagen structure of acellular dermal matrix is similar for normal human skin, unirradiated and irradiated ACD (*H&E - hematoxylin and eosin stain*). Furthermore, comparing Figure 1a to Figure 1c, the irradiated ACD shows the absence of cellular components, i.e. there are no visible intact cells remaining after the ACD processing.

**Figure 2a, 2b, 2c—VVG Stain Micrographs:**
Normal human skin, unirradiated ACD & gamma irradiated ACD. Histology of the elastin fibers of acellular dermal matrix is similar for normal human skin, unirradiated and irradiated ACD (*VVG - Verhoeff-Van Gieson Staining for elastin fibers*).
Figure 3a, 3b, 3c—Transmission Electron Micrographs: Normal human skin, unirradiated ACD & gamma irradiated ACD. The collagen structure does not exhibit differences between the normal human skin, unirradiated and irradiated ACD.

Figure 3a: Normal Human Skin

Figure 3b: Acellular Dermis, Unirradiated

Figure 3c: Gamma Irradiated ACD


4. Animal study data on file at TBI; results not necessarily indicative of clinical performances.


This material is intended for the sole use and benefit of the Biomet sales force and physicians. It is not to be redistributed, duplicated or disclosed without the express written consent of Biomet.

All trademarks herein are property of Biomet, Inc. or its subsidiaries unless otherwise indicated.