Surgical Technique
A more complete occipito-cervical plating solution.
From the people of Zimmer Spine.

At Zimmer Spine we are dedicated to helping you provide stabilization and promote fusion of the occipito-cervical junction. That’s why we’ve developed the Nex-Link OCT Occipital Cervical Plating System.

This highly compatible solution works with the Nex-Link Cervicothoracic Fixation System to provide a complete and versatile approach to posterior cervical fusion. Effective and easy to use, the Nex-Link OCT System includes a modular occipital plate, adjustable plate connectors, pre-bent rods and an impressive array of instrumentation. The Nex-Link OCT System supports multiple technique options to meet a wide range of surgeon preferences.

Achieve successful patient results with the Nex-Link OCT System—another winning solution brought to you by the people of Zimmer Spine.
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>2</td>
</tr>
<tr>
<td>Description/Indications/Contraindications</td>
<td>4</td>
</tr>
<tr>
<td>Nex-Link OCT Implants</td>
<td>6</td>
</tr>
<tr>
<td>Nex-Link OCT Instruments</td>
<td>8</td>
</tr>
<tr>
<td>Nex-Link System Components</td>
<td>13</td>
</tr>
<tr>
<td>Surgical Technique</td>
<td>14</td>
</tr>
<tr>
<td>Nex-Link OCT Kit Contents</td>
<td>28</td>
</tr>
<tr>
<td>Warnings and Precautions</td>
<td>32</td>
</tr>
</tbody>
</table>
Introduction

Zimmer Spine's *Nex-Link OCT* System is intended to provide stabilization as an adjunct to fusion of the occipito-cervical junction. The system’s implants and instruments are designed to optimize fixation to the occiput and easily connect with Zimmer Spine's *Nex-Link Cervicothoracic Fixation System*. Together, the systems provide a total solution for occipital-cervicothoracic procedures.

Nex-Link OCT System Features

- Five points of occipital fixation
- Adjustable plate connectors
- Flexible instruments
- Pre-bent annealed rods
Nex-Link OCT Specifications

<table>
<thead>
<tr>
<th>Component</th>
<th>Minimum Adjustable Width</th>
<th>Maximum Adjustable Width</th>
<th>Connector Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>Octa II™ Plate</td>
<td>25mm</td>
<td>46mm</td>
<td>12.5mm</td>
</tr>
<tr>
<td>Screws</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard Cancellous/Cortical OCT</td>
<td>6.0mm – 14mm (16mm – 20mm)*</td>
<td>2.0mm</td>
<td>3.5mm</td>
</tr>
<tr>
<td>Rescue Cancellous/Cortical OCT</td>
<td>6.0mm – 14mm (16mm – 20mm)*</td>
<td>2.2mm</td>
<td>4.0mm</td>
</tr>
<tr>
<td>Closed Cannulated Screw</td>
<td>40mm – 52mm*</td>
<td>3.0mm</td>
<td>4.0mm</td>
</tr>
<tr>
<td>Rods</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annealed Pre-Bent Rods</td>
<td>160mm</td>
<td>4.0mm</td>
<td>90° and 120°</td>
</tr>
<tr>
<td>Hooks</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nex-Link Hook</td>
<td>5mm, Extended Body</td>
<td>Blue</td>
<td></td>
</tr>
<tr>
<td>Nex-Link Hook</td>
<td>7mm, Extended Body</td>
<td>Green</td>
<td></td>
</tr>
<tr>
<td>Nex-Link Hook</td>
<td>9mm*</td>
<td>Red</td>
<td></td>
</tr>
<tr>
<td>Offset Connectors</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Closed Screw Offset Connectors</td>
<td>4.5mm and 10.5mm</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Select sizes available by special order only
Description

The Zimmer Spine, Inc. Nex-Link OCT Occipital Cervical Plating System components are temporary implants that are used to stabilize the spine (occiput-T3) during the development of a solid spinal fusion in patients with degenerative disease, trauma (including fractures), and tumor pathology.

The system consists of a modular plate, rod-to-plate connectors, hooks and pre-contoured rods. Cancellous and cortical bone screws are intended for fixation to the occiput and Cannulated Side-Loading Closed Screws are intended for fixation to the upper thoracic spine.

Indications

The Nex-Link OCT Occipital Cervical Plating System is intended to provide stabilization as an adjunct to fusion of the cervical spine and occipito-cervicothoracic junction (occiput-T3) for the following indications: degenerative disc disease (neck pain of discogenic origin with degeneration of the disc as confirmed by patient history and radiological studies), spondylolisthesis, spinal stenosis, fracture/dislocation, atlanto-axial fracture with instability, occipito-cervical dislocation, revision of previous cervical spine fusion surgery and tumors.

The cancellous and cortical bone screws (3.5mm and 4.0mm diameters; 6.0mm-20mm threaded lengths) are used with the Nex-Link OCT System to allow for occipital fixation and limited to occipital fixation only.

The Nex-Link OCT System 4.0mm cannulated side-loading closed screws are limited to placement in the upper thoracic spine (T1-T3) for additional stabilization of the cervical spine for the indications specified above.
Contraindications

The *Nex-Link OCT* Occipital Cervical Plating System is not designed or sold for any use except as indicated. **DO NOT USE THE NEX-LINK OCT OCCIPITAL CERVICAL PLATING SYSTEM IMPLANTS IN THE PRESENCE OF ANY CONTRAINDICATION.**

Contraindications include, but are not limited to:

1. Presence of overt infection and/or localized inflammation
2. Rapid joint disease, bone absorption, osteopenia and/or osteoporosis
3. Suspected or documented metal allergy or intolerance
4. Any patient having inadequate tissue coverage over the operative site
5. Any time implant utilization would interfere with anatomical structures or expedited physiological performance, such as impinging on vital structures
6. Severe comminuted fractures, such that segments may not be maintained in satisfactory proximate reduction
7. Use in displaced, non-reduced fractures with bone loss
8. The presence of marked bone absorption or severe metabolic bone disease that could compromise the fixation achieved
9. Any other medical or surgical condition that would preclude the potential benefit of surgery, such as elevation of sedimentation rate unexplained by other diseases, elevation of white blood count (WBC), fever, leukocytosis or a marked left shift in the WBC differential count
10. The physical contact of the *Nex-Link OCT* Occipital Cervical Plating System implants with metal implant made of anything other than implant grade titanium, such as stainless steel (ASTM F138) or MP35 N, or other dissimilar metal
11. Situations with the absence or compromise of significant stabilizing elements
12. Use in the presence of any neural or vascular deficits or other compromising pathology, which may be further injured by device intervention
Nex-Link OCT Implants

The *Nex-Link OCT* System features a diverse range of surgical implants designed to conform to the anatomy of the cervical and thoracic spine. Gain the versatility you need to fuse across this challenging area of the spine with meticulously engineered implants such as our generous polyaxial screws, our wide range of screw and hook sizes and our smooth shank screws that minimize the irritation of vital elements.

OCTA II Plate

7001-01

OCTA II Connector

7002-01

Cancellous Occipital Screw 3.5mm

7004-3506 to 7004-3520

Cortical Occipital Screw 3.5mm

7005-3506 to 3520

Cancellous Occipital Screw 4.0mm Rescue

7004-4006 to 7004-4020

Cortical Occipital Screw 4.0mm Rescue

7005-4006 to 4020
4.0mm Pre-contoured Occipital Rod 120°
7003-090

4.0mm Pre-contoured Occipital Rod 90°
7003-120

4.0mm Open Offset Connector, Large
2116-02

4.0mm Open Offset Connector, Small
2116-01

4.0mm Closed Cannulated Side-Loading Screw
2115-040 to 2115-052

4.0mm Closed Screw Locking Set Screw
704-01

4.0mm Open Connector Closure Top
707-01
Nex-Link OCT Instrumentation offers the ultimate in comfort and versatility. From the Occipital Plate Holding Drill Guide to the Ratcheting Palm Handle, these expertly engineered tools improve access, reduce fatigue and enhance performance. We designed our leading instrumentation set with your needs in mind with features that can reduce OR time, simplify surgical flow and support a wide range of technique options.

Occipital Plate Bender Body
7050-001
Slides over the body of the plate to facilitate bending; used in conjunction with the Occipital Plate Bender Wing.

Occipital Plate Bender Wing
7055-01
Slides over the wing of the plate to facilitate bending; used in conjunction with the Occipital Plate Bender Body.

Occipital Plate Holding Drill Guide
7051-001
Serves as a plate holder and drill guide for the OCTA II Plate. Facilitates drilling, tapping and screw placement in conjunction with either the mini-rigid or flexible Nex-Link OCT Instrumentation.

Flexible Instrument Guidance Tool
7076-01
Facilitates drilling, tapping and screw placement in conjunction with either mini-rigid or flexible Nex-Link OCT Instrumentation. Offers greater visibility to the plate than the Occipital Plate Holding Drill Guide. Does not hold the OCTA II Plate.

Flexible 2.0mm Occipital Drill
7052-06, 08, 10, 12, 14, 16, 18, 20
Drills for placement of occipital bone screws. Flexible design facilitates access to difficult anatomy. Available in varying lengths.

Flexible 3.5mm Cancellous Occipital Tap
7053-01
Taps for placement of cancellous occipital bone screws. Flexible design facilitates access to difficult anatomy. Laser-marked for depth reference.

Flexible 3.5mm Cortical Occipital Tap
7053-02
Taps for placement of cortical occipital bone screws. Flexible design facilitates access to difficult anatomy. Laser-marked for depth reference.

Rigid 2.0mm Occipital Mini-Drill
7071-001
Drills for placement of occipital bone screws. Laser-marked for depth reference.
Rigid 3.5mm Cancellous Occipital Mini-Tap 7072-01
Taps for placement of cancellous occipital bone screws. Laser-marked for depth reference.

Rigid 3.5mm Cortical Occipital Mini-Tap 7072-02

Rigid 3.5mm Cancellous Occipital Tap 7067-01
Taps through the Adjustable Depth Drill Guide for placement of cancellous occipital bone screws.

Rigid 3.5mm Cortical Occipital Tap 7067-02
Taps through the Adjustable Depth Drill Guide for placement of cortical occipital bone screws.

Flexible 2.5mm Hex Driver 7054-01
Facilitates placement of occipital bone screws. Flexible design facilitates access to difficult anatomy.

Rigid 2.0mm Occipital Drill 7066-01
Drills through the Adjustable Depth Drill Guide for placement of occipital bone screws.

Adjustable Depth Drill Guide 7065-01
Enables quick changes in drill depth in conjunction with rigid occipital drills and taps. Do not attempt to place occipital screws through the drill guide.

Rigid 2.5mm Hex Driver, Short 7068-001
Rigid 2.5mm Hex Driver, Long 7068-002
Facilitates placement of occipital bone screws.
Nex-Link OCT Instruments

Occipital Connector Adjuster
7073-01
Facilitates manipulation of occipital connectors.

Cannulated 4.0mm Tap
7062-01
Taps for placement of Cannulated Closed Screws.
Laser-marked for depth reference.

Occipital Plate Jack
7074-01
Facilitates manipulation of occipital connectors by lifting the plate slightly from the occiput, freeing the occipital connector.

Non-Cannulated 4.0mm Tap
7062-02
Taps for placement of Non-Cannulated Closed Screws.
Laser-marked for depth reference.

Cannulated 2.9mm Drill
Drills for placement of Cannulated Closed Screws.
Laser-marked for depth reference.

Non-Cannulated 2.9mm Drill
Drills for placement of Non-Cannulated Closed Screws.
Laser-marked for depth reference.

Closed Screw Drill Guide
7060-01
Facilitates drilling and placement of both cannulated and non-cannulated closed screws.

K-Wire Sub-Guide
7060-02
Ensures controlled insertion of the K-wire when inserted through the Closed Screw Drill Guide.
Closed Screw Driver
7063-01
Facilitates placement of both Cannulated and Non-Cannulated Closed Screws.

Closed Screw Driver Inner Shaft
7063-02
Inserted through the Closed Screw Driver and threads into the top of either Cannulated or Non-Cannulated Closed Screws. Holds screw securely to the Closed Screw Driver.

Occipital Rod Bender
7070-001
Contours 4.0mm cervical rods.

Occipital Rod Reduction Forceps
7058-01
Persuades the rod into the occipital connector.

Closure Top Starter, Short
760-1
Closure Top Starter, Long
760-2
Provide friction fit interface with closure tops and set screws for easy insertion. Do not attempt to use this handle for final tightening.

Flexible Closure Top Driver
7057-01
Flexible shaft design facilitates access to difficult anatomy to aid either set screw or closure top insertion and final tightening.

Closure Top Driver, Long
765-021
Closure Top Driver, Short
765-022
Final tighten set screws and closure tops.

Small Silicone AO Handle
1012-001
Drives screws and provisionally locks both set screws and closure tops. Do not attempt to use this handle for final tightening.
Nex-Link OCT Instruments

Occipital Connector Counter-Torque
7059-01
Functions as a counter-torque for occipital connectors during final tightening.

Closed Screw Counter-Torque
7064-01
Functions as a counter-torque for closed screws during final tightening.

Closed Screw Offset Connector Counter-Torque
7069-001
Functions as a counter-torque for closed screw offset connectors during final tightening.
Nex-Link System Components

Implants

- Open Hook, 5mm
 2111-15
- Open Hook, 7mm
 2111-17
- Open Hook, 9mm
 2111-19

- Open Hook, Extended Body 5mm
 2111-25
- Open Hook, Extended Body 7mm
 2111-27

Prepare the implant site and determine hook implant size. Trial handles are color-coded to correspond with the implant size.

Instruments

- Torque Limiting Driver – AO
 784-01
 Final tightens closure tops and set screws.

- Hook Holding Forceps
 774-3
 Securely clamps to the hook to aid in hook placement.

- Hook Trial II, 5mm
 787-15
- Hook Trial II, 7mm
 787-17
- Hook Trial II, 9mm
 787-19

- Hook Pusher
 786-2
 Offers additional hook-loading capability in concert with hook holding forceps.
Patient Positioning

Step 1

Patient Positioning
Place the patient on a radiolucent operating table in the prone position with the head and neck held securely in proper alignment. Drape the patient for posterior spinal fusion.
Surgical Technique

Occipital Landmarks
OCTA II Plate Preparation

Step 2

OCTA II Plate Contouring
The OCTA II Plate can be contoured to fit a patient's anatomy using the Occipital Plate Benders at the Wing/Body interface.

Left Side Bending
Slide the Occipital Plate Bender Body onto the plate so that the “R” is visible. Slide the Occipital Plate Bender Wing over the wing so the “L” is visible. Apply force until the desired angle is obtained.

Right Side Bending
Slide the Occipital Plate Bender Body onto the plate so that the “L” is visible. Slide the Occipital Plate Bender Wing over the wing so the “R” is visible. Apply force until the desired angle is obtained.

Note: Reverse bending of the OCTA II Plate is not recommended.

Step 3a

OCTA II Connector Threading
Attach the OCTA II Connectors to the plate by carefully threading the connector through the OCTA II Plate. The connector will slide medially/laterally when it has been fully threaded. The Occipital Connector Adjuster does not hold the connector but can be used to aid in threading the connector through the OCTA II Plate.
Surgical Technique

Step 3b

OCTA II Connector Adjustment
The connector may be slid medially/laterally along the Wing channel, but should not slide past the midline of the insertion hole.

Occipital Screw Preparation

The Nex-Link OCT System was created to embrace a wide range of surgical approaches. Please review the following technique options.

Step 4 Option 1: Plate Holding Drill Guide

Occipital Plate Holding Drill Guide
The Occipital Plate Holding Drill Guide is designed to hold the plate against the occiput and allow the mini-rigid or flexible drills, taps and drivers to pass through it.
Occipital Drilling
Pass the Rigid 2.0mm Occipital Mini-Drill through the Plate Holding Drill Guide and drill to the desired depth.

Occipital Tapping
Pass the Rigid 3.5mm Occipital Mini-Tap through the Plate Holding Drill Guide to aid in tapping. The 3.5mm Cancellous Occipital Tap is used with the Cancellous Occipital Screws. The 3.5mm Cortical Occipital Tap is used with Cortical Occipital Screws

Note: Tapping under power is not recommended.

Screw Placement
Choose an OCT Screw that corresponds to the pre-drilled depth and thread pitch. Provisionally tighten the screw with the Rigid 2.5mm Hex Driver. Do not fully tighten the OCTA II Plate against the occiput until after the rods have been placed. The OCTA II plate is recommended for use with a minimum of three bone screws to ensure adequate fixation.

The depth markings on the drill are for reference only.
Surgical Technique

Step 4 Option 2: Adjustable Depth Drill Guide

Drill Guide Preparation
Set the Adjustable Depth Drill Guide to the desired depth by loosening the retention collar and turning the inner shaft to increase or decrease the depth.

Occipital Drilling
Advance the 2.0mm Rigid Occipital Drill through the Adjustable Depth Drill Guide to the pre-set depth.

The depth markings on the drill guide are for reference only. Proper drill depth and screw length are based on bone thickness determined by radiographic measurements or alternative means.
Occipital Tapping

Advance the Rigid 3.5mm Occipital Tap through the Adjustable Depth Drill Guide and tap to the pre-set depth while taking great care to avoid stripping the bone with the tap.

Note: Tapping under power is not recommended.

Proper drill depth and screw length are based on bone thickness determined by radiographic measurements or alternative means.
Step 4 Option 3: Flexible Instrument Guidance Tool

Occipital Drilling
Flexible drills are available in 2mm increments from 6mm to 20mm. Pass the Flexible 2.0mm Occipital Drill through the Flexible Instrument Guidance Tool. Drill until a hard stop is reached.

Occipital Tapping
Choose the appropriate tap by determining the type of screw that will be used. If using a cortical occipital screw, a cortical tap of the corresponding size should be used. If using a cancellous occipital screw, a cancellous tap of the corresponding size should be used. Pass the Flexible 3.5mm Occipital Tap through Flexible Instrument Guidance Tool to ensure proper tap depth.

Note: Tapping under power is not recommended.

Occipital Screw Placement
Choose an occipital screw that corresponds to the pre-drilled depth and thread pitch. Provisionally tighten the screw with the Flexible 2.5mm Hex Driver. Do not fully tighten the OCTA II Plate against the occiput until after the rods have been placed. The OCTA II Plate requires a minimum of three bone screws to ensure adequate fixation.

The depth markings on the flexible taps are for reference only. Proper drill depth and screw length are based on bone thickness determined by radiographic measurements or alternative means.
Cervicothoracic Bone Anchor Preparation

Nex-Link Hooks may be used to anchor the construct to the posterior cervical spine and Closed Cannulated Screws for fixation in the upper thoracic spine.

This technique describes the use of *Nex-Link* Hooks in the cervical spine (C1-C7) and *Nex-Link OCT* System cannulated closed side-loading screws in the upper thoracic spine (T1-T3).

Step 5a

Pedicle Preparation
Perforate the bony cortex of the thoracic pedicle in the desired location using the *Nex-Link* Bone Awl.

Step 5b

Closed Screw Drill Guide Assembly
Assemble the Closed Screw Drill using the K-Wire Sub-Guide and the Closed Screw Drill Guide. Slide the K-Wire Sub-Guide into the Closed Screw Drill Guide. Compress the spring and twist clockwise until the two pieces lock together.
Surgical Technique

Step 5c

K-Wire
Under fluoroscopy, advance the K-wire to a desired depth. While maintaining the position of the K-wire, remove the K-Wire Sub-Guide.

Step 5d

Drilling
Using the laser marks as a depth reference, insert the 2.9mm Cannulated Drill over the K-wire and drill to the desired depth taking care to avoid advancing the K-wire while drilling.

Step 5e

Tapping
Insert the 4.0mm Cannulated Tap over the K-wire and tap to the desired depth taking care to avoid advancing the K-wire while tapping.

Note: Tapping under power is not recommended.
Step 5f

Closed Screwdriver Assembly
Thread the Closed Screw Driver Inner Shaft into the Closed Screw Driver. Select the screw length that corresponds to the depth of the drilled hole. Load the closed screw onto the Cannulated Closed Screw Driver. Secure the screw to the driver by threading the inner shaft into the top of the closed screw.

Step 5g

Closed Screw Insertion
Advance the screw to the pre-drilled depth taking care to avoid advancing the K-wire while inserting the screw.

Remove the K-wire and disengage the driver by turning the inner shaft counterclockwise.

Step 5h

Closed Screw Offset Connector Assembly
Select the appropriate offset connector and place it into the screw. Using the Friction Fit Long Closure Top Starter, insert a set screw into the closed screw to provisionally tighten the offset connector.
Surgical Technique

Hook Trialing and Selection
Identify which landmarks of the cervical lamina will receive hooks. Remove soft tissue and ligamentous connections sparingly, providing good visualization of the entire lamina and margins of the spinal canal.

Step 6a

Hook Trialing and Selection
Place hook trials on the lamina, identifying the implant size with lowest height and best laminar fit. Trials may also separate or remove ligamentous attachments that could hinder final placement. When placing both the trial and the implant, take care not to breach the margins of the spinal cord.

Step 6b

Hook Insertion
Attach the Offset Hook Holders to the proximal body of the hook. Then slide the hook underneath the lamina at the previously prepared position.

Step 6c
Hook Positioning

With the forceps, secure the hooks to the cervical lamina. If a hook requires additional leverage to secure it, insert the Hook Pusher into its tulip head. The implant may now be loaded past soft tissue. Place all necessary hooks using this same procedure.

Construct Attachment

Step 7a

Rod Contouring

Using the malleable trial rods, determine the optimal shape and placement of the final rod by contouring it to the plate hooks and/or screws. Use the trial rod as a guide and contour the 4.0mm Pre-Bent Rod to the desired shape using the Occipital Rod Bender.

Step 7b

Rod Placement

To ease rod placement the OCTA II Connectors can be adjusted to meet the rod. If the occipital connectors will not slide, thread the Occipital Plate Jack into the OCTA II Plate, lifting the plate’s wing and allowing the connector to slide freely. The connectors can then be positioned using the Occipital Connector Adjuster.
Surgical Technique

Step 7c

Provisional Tightening
The Occipital Rod Reducing Forceps, in conjunction with the Closure Top Starter (can be used) to help start the closure top by reducing the rod into the OCTA II Connector. Confirm that the rod is seated in the implants and begin to tighten the construct provisionally using the Closure Top Driver.

Step 8a

OCTA II Connector Final Tightening
When the construct is assembled, tighten the occipital bone screws with the preferred driver. Attach the Nex-Link Torque Limiting Driver to the preferred closure top driver. Place the Occipital Connector Counter-Torque on the Occipital Connector and pass the driver through the counter-torque. Twist clockwise until an audible snap is heard. The torque-limiting handle will give at 29 inch-pounds.

Note: Upon final tightening, the construct is rigid and the connectors will no longer move in rotation or translation.

Note: Do not under or over-tighten the closure top. Always use torque-limiting driver to ensure proper torque is applied to closure top.

Step 8b

Hook Final Screw Tightening
Tighten the construct by placing the Open Implant Counter-Torque Wrench on the body of polyaxial screw or hook. Insert Star Closure Top Driver and Blue Torque Limiting Handle assembly into the Open Implant Counter-Torque wrench. Rotate the handle until the ratcheting mechanism releases with an audible “snap.” Tighten all closure tops with same procedure.

Note: Do not under or over-tighten the closure top. Always use torque-limiting driver to ensure proper torque is applied to closure top.
Closed Screw Final Tightening

In preparation for final screw tightening, attach the Nex-Link Torque Limiting Driver to the Long Closure Top Driver and pass it through the Closed Screw Counter-Torque.

Position the assembly over the screw and twist until an audible “snap” is heard. The torque limiting handle will give at 29 inch-pounds.

Note: Do not under or over-tighten the closure top. Always use torque-limiting driver to ensure proper torque is applied to closure top.

Closed Screw Offset Connector Final Tightening

Repeat the above steps for final connector-rod tightening using the Closed Screw Offset Connector Counter-Torque instead of the Closed Screw Counter-Torque.

Note: Do not under or over-tighten the closure top. Always use a torque-limiting driver to ensure proper torque is applied to closure top.
Nex-Link OCT Kit Contents

Implants

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Standard Kit Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plates and Connectors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7001-01</td>
<td>OCTA II Plate</td>
<td>3</td>
</tr>
<tr>
<td>7002-01</td>
<td>OCTA II Connector</td>
<td>6</td>
</tr>
<tr>
<td>Rods</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7003-090</td>
<td>4.0MM Pre-Contoured Occipital Rod (90°)</td>
<td>6</td>
</tr>
<tr>
<td>7003-120</td>
<td>4.0MM Pre-Contoured Occipital Rod (120°)</td>
<td>6</td>
</tr>
<tr>
<td>Cancellous Screws</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7004-3506</td>
<td>Cancellous Occipital Screw 3.5mm x 6.0mm</td>
<td>5</td>
</tr>
<tr>
<td>7004-3508</td>
<td>Cancellous Occipital Screw 3.5mm x 8.0mm</td>
<td>0</td>
</tr>
<tr>
<td>7004-3510</td>
<td>Cancellous Occipital Screw 3.5mm x 10mm</td>
<td>5</td>
</tr>
<tr>
<td>7004-3512</td>
<td>Cancellous Occipital Screw 3.5mm x 12mm</td>
<td>5</td>
</tr>
<tr>
<td>7004-3514</td>
<td>Cancellous Occipital Screw 3.5mm x 14mm</td>
<td>5</td>
</tr>
<tr>
<td>7004-3516</td>
<td>Cancellous Occipital Screw 3.5mm x 16mm</td>
<td>0*</td>
</tr>
<tr>
<td>7004-3518</td>
<td>Cancellous Occipital Screw 3.5mm x 18mm</td>
<td>0*</td>
</tr>
<tr>
<td>7004-3520</td>
<td>Cancellous Occipital Screw 3.5mm x 20mm</td>
<td>0*</td>
</tr>
<tr>
<td>7004-4006</td>
<td>Cancellous Occipital Screw 4.0mm x 6.0mm</td>
<td>3</td>
</tr>
<tr>
<td>7004-4008</td>
<td>Cancellous Occipital Screw 4.0mm x 8.0mm</td>
<td>3</td>
</tr>
<tr>
<td>7004-4010</td>
<td>Cancellous Occipital Screw 4.0mm x 10mm</td>
<td>3</td>
</tr>
<tr>
<td>7004-4012</td>
<td>Cancellous Occipital Screw 4.0mm x 12mm</td>
<td>3</td>
</tr>
<tr>
<td>7004-4014</td>
<td>Cancellous Occipital Screw 4.0mm x 14mm</td>
<td>3</td>
</tr>
<tr>
<td>7004-4016</td>
<td>Cancellous Occipital Screw 4.0mm x 16mm</td>
<td>0*</td>
</tr>
<tr>
<td>7004-4018</td>
<td>Cancellous Occipital Screw 4.0mm x 18mm</td>
<td>0*</td>
</tr>
<tr>
<td>7004-4020</td>
<td>Cancellous Occipital Screw 4.0mm x 20mm</td>
<td>0*</td>
</tr>
<tr>
<td>Cortical Screws</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7005-3506</td>
<td>Cortical Occipital Screw 3.5mm x 6.0mm</td>
<td>5</td>
</tr>
<tr>
<td>7005-3508</td>
<td>Cortical Occipital Screw 3.5mm x 8.0mm</td>
<td>10</td>
</tr>
<tr>
<td>7005-3510</td>
<td>Cortical Occipital Screw 3.5mm x 10mm</td>
<td>5</td>
</tr>
<tr>
<td>7005-3512</td>
<td>Cortical Occipital Screw 3.5mm x 12mm</td>
<td>5</td>
</tr>
</tbody>
</table>

*Indicates implants or instruments that do not come standard and must be requested.

Nex-Link Hooks are available in the Nex-Link System Kit. For Nex-Link Hooks, see the Nex-Link Surgical Technique.
<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Standard Kit Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>7005-3514</td>
<td>Cortical Occipital Screw 3.5mm x 14mm</td>
<td>5</td>
</tr>
<tr>
<td>7005-3516</td>
<td>Cortical Occipital Screw 3.5mm x 16mm</td>
<td>0*</td>
</tr>
<tr>
<td>7005-3518</td>
<td>Cortical Occipital Screw 3.5mm x 18mm</td>
<td>0*</td>
</tr>
<tr>
<td>7005-3520</td>
<td>Cortical Occipital Screw 3.5mm x 20mm</td>
<td>0*</td>
</tr>
<tr>
<td>7005-4006</td>
<td>Cortical Occipital Screw 4.0mm x 6.0mm</td>
<td>3</td>
</tr>
<tr>
<td>7005-4008</td>
<td>Cortical Occipital Screw 4.0mm x 8.0mm</td>
<td>3</td>
</tr>
<tr>
<td>7005-4010</td>
<td>Cortical Occipital Screw 4.0mm x 10mm</td>
<td>3</td>
</tr>
<tr>
<td>7005-4012</td>
<td>Cortical Occipital Screw 4.0mm x 12mm</td>
<td>3</td>
</tr>
<tr>
<td>7005-4014</td>
<td>Cortical Occipital Screw 4.0mm x 14mm</td>
<td>3</td>
</tr>
<tr>
<td>7005-4016</td>
<td>Cortical Occipital Screw 4.0mm x 16mm</td>
<td>0*</td>
</tr>
<tr>
<td>7005-4018</td>
<td>Cortical Occipital Screw 4.0mm x 18mm</td>
<td>0*</td>
</tr>
<tr>
<td>7005-4020</td>
<td>Cortical Occipital Screw 4.0mm x 20mm</td>
<td>0*</td>
</tr>
<tr>
<td>2115-4040</td>
<td>4.0mm x 40mm Cannulated Side Load Closed Screw</td>
<td>5</td>
</tr>
<tr>
<td>2115-4042</td>
<td>4.0mm x 42mm Cannulated Side Load Closed Screw</td>
<td>5</td>
</tr>
<tr>
<td>2115-4044</td>
<td>4.0mm x 44mm Cannulated Side Load Closed Screw</td>
<td>5</td>
</tr>
<tr>
<td>2115-4046</td>
<td>4.0mm x 46mm Cannulated Side Load Closed Screw</td>
<td>5</td>
</tr>
<tr>
<td>2115-4048</td>
<td>4.0mm x 48mm Cannulated Side Load Closed Screw</td>
<td>5</td>
</tr>
<tr>
<td>2115-4050</td>
<td>4.0mm x 50mm Cannulated Side Load Closed Screw</td>
<td>5</td>
</tr>
<tr>
<td>2115-4052</td>
<td>4.0mm x 52mm Cannulated Side Load Closed Screw</td>
<td>5</td>
</tr>
<tr>
<td>2116-01</td>
<td>4.0mm Open Offset Connector, Small</td>
<td>5</td>
</tr>
<tr>
<td>2116-02</td>
<td>4.0mm Open Offset Connector, Large</td>
<td>5</td>
</tr>
<tr>
<td>704-01</td>
<td>4.0mm Closed Screw Locking Screw</td>
<td>5</td>
</tr>
<tr>
<td>707-01</td>
<td>4.0mm Open Connector Closure Top</td>
<td>15</td>
</tr>
</tbody>
</table>
Nex-Link OCT Kit Contents

Instruments

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Standard Kit Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>7050-001</td>
<td>Occipital Plate Bender (Body)</td>
<td>1</td>
</tr>
<tr>
<td>7051-001</td>
<td>Occipital Plate Holding Drill Guide</td>
<td>1</td>
</tr>
<tr>
<td>7052-06</td>
<td>Flexible 2.0mm Occipital Drill · 6.0mm</td>
<td>1</td>
</tr>
<tr>
<td>7052-08</td>
<td>Flexible 2.0mm Occipital Drill · 8.0mm</td>
<td>1</td>
</tr>
<tr>
<td>7052-10</td>
<td>Flexible 2.0mm Occipital Drill · 10mm</td>
<td>1</td>
</tr>
<tr>
<td>7052-12</td>
<td>Flexible 2.0mm Occipital Drill · 12mm</td>
<td>1</td>
</tr>
<tr>
<td>7052-14</td>
<td>Flexible 2.0mm Occipital Drill · 14mm</td>
<td>1</td>
</tr>
<tr>
<td>7052-16</td>
<td>Flexible 2.0mm Occipital Drill · 16mm</td>
<td>1</td>
</tr>
<tr>
<td>7052-18</td>
<td>Flexible 2.0mm Occipital Drill · 18mm</td>
<td>1</td>
</tr>
<tr>
<td>7052-20</td>
<td>Flexible 2.0mm Occipital Drill · 20mm</td>
<td>1</td>
</tr>
<tr>
<td>7053-01</td>
<td>Flexible 3.5mm Cancellous Occipital Tap</td>
<td>1</td>
</tr>
<tr>
<td>7053-02</td>
<td>Flexible 3.5mm Cortical Occipital Tap</td>
<td>1</td>
</tr>
<tr>
<td>7054-01</td>
<td>Flexible 2.5mm Hex Driver</td>
<td>1</td>
</tr>
<tr>
<td>7055-01</td>
<td>Occipital Plate Bender (Wing)</td>
<td>1</td>
</tr>
<tr>
<td>760-1</td>
<td>Closure Top Starter · Short</td>
<td>1</td>
</tr>
<tr>
<td>760-2</td>
<td>Closure Top Starter · Long</td>
<td>1</td>
</tr>
<tr>
<td>765-021</td>
<td>Closure Top Driver · Long</td>
<td>1</td>
</tr>
<tr>
<td>765-022</td>
<td>Closure Top Driver · Short</td>
<td>1</td>
</tr>
<tr>
<td>7057-01</td>
<td>Flexible Closure Top Driver</td>
<td>1</td>
</tr>
<tr>
<td>7058-01</td>
<td>Occipital Rod Reduction Forceps</td>
<td>1</td>
</tr>
<tr>
<td>7059-01</td>
<td>Occipital Connector Counter-Torque</td>
<td>1</td>
</tr>
<tr>
<td>7060-01</td>
<td>Closed Screw Drill Guide</td>
<td>1</td>
</tr>
<tr>
<td>7060-02</td>
<td>K-Wire Sub-Guide (Closed Screw)</td>
<td>1</td>
</tr>
<tr>
<td>7061-01</td>
<td>Cannulated 2.9mm Drill (Closed Screw)</td>
<td>1</td>
</tr>
<tr>
<td>Part Number</td>
<td>Description</td>
<td>Standard Kit Quantity</td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
<td>-----------------------</td>
</tr>
<tr>
<td>7061-02</td>
<td>Non-Cannulated 2.9mm Drill (Closed Screw)</td>
<td>1</td>
</tr>
<tr>
<td>7062-01</td>
<td>Cannulated 4.0mm Tap (Closed Screw)</td>
<td>1</td>
</tr>
<tr>
<td>7062-02</td>
<td>Non-Cannulated 4.0mm Tap (Closed Screw)</td>
<td>1</td>
</tr>
<tr>
<td>7063-01</td>
<td>Closed Screw Driver</td>
<td>1</td>
</tr>
<tr>
<td>7063-02</td>
<td>Closed Screw Driver Inner Shaft</td>
<td>1</td>
</tr>
<tr>
<td>7064-01</td>
<td>Closed Screw Counter-Torque</td>
<td>1</td>
</tr>
<tr>
<td>7065-01</td>
<td>Adjustable Depth Drill Guide</td>
<td>1</td>
</tr>
<tr>
<td>7066-01</td>
<td>2.0mm Rigid Occipital Drill</td>
<td>1</td>
</tr>
<tr>
<td>7067-01</td>
<td>3.5mm Cancellous Rigid Occipital Tap</td>
<td>1</td>
</tr>
<tr>
<td>7067-02</td>
<td>3.5mm Cortical Rigid Occipital Tap</td>
<td>1</td>
</tr>
<tr>
<td>7068-001</td>
<td>2.5mm Rigid Hex Driver - Short</td>
<td>1</td>
</tr>
<tr>
<td>7068-002</td>
<td>2.5mm Rigid Hex Driver - Long</td>
<td>1</td>
</tr>
<tr>
<td>7069-001</td>
<td>Closed Screw Offset Connector Counter-Torque</td>
<td>1</td>
</tr>
<tr>
<td>7070-001</td>
<td>Occipital Rod Bender</td>
<td>1</td>
</tr>
<tr>
<td>7071-001</td>
<td>2.0mm Rigid Occipital Mini-Drill</td>
<td>1</td>
</tr>
<tr>
<td>7072-01</td>
<td>3.5mm Cancellous Rigid Occipital Mini-Tap</td>
<td>1</td>
</tr>
<tr>
<td>7072-02</td>
<td>3.5mm Cortical Rigid Occipital Mini-Tap</td>
<td>1</td>
</tr>
<tr>
<td>7073-01</td>
<td>Occipital Connector Adjuster</td>
<td>1</td>
</tr>
<tr>
<td>7074-01</td>
<td>Occipital Plate Jack</td>
<td>1</td>
</tr>
<tr>
<td>7076-01</td>
<td>Flexible Instrument Guidance Tool</td>
<td>1</td>
</tr>
<tr>
<td>1001-18</td>
<td>K-Wire Trocar Tip, .054" x 18.0"</td>
<td>4</td>
</tr>
<tr>
<td>1011-18</td>
<td>K-Wire Dispenser 18"</td>
<td>1</td>
</tr>
<tr>
<td>1012-001</td>
<td>Small Silicone Handle, AO with Swivel Top</td>
<td>1</td>
</tr>
</tbody>
</table>
Warnings

Following are specific warnings, precautions and adverse effects that should be understood by the surgeon and explained to the patient. These warnings do not include all adverse effects that can occur with surgery in general, but are important considerations particular to metallic internal fixation devices. General surgical risks should be explained to the patient prior to surgery.

1. IN THE U.S.A., THIS PRODUCT HAS LABELING LIMITATIONS.

2. THIS DEVICE IS NOT APPROVED FOR SCREW ATTACHMENT OR FIXATION TO THE POSTERIOR ELEMENTS, THORACIC (T4-T12) OR LUMBAR SPINE.

3. Potential risks identified with the use of this device system, which may require additional surgery, include:
 a) Device component fracture
 b) Loss of fixation
 c) Non-union
 d) Fracture of the vertebra
 e) Neurological injury
 f) Vascular or visceral injury

Precautions

1. CORRECT HANDLING OF THE IMPLANT IS EXTREMELY IMPORTANT. Contouring of the metal implants should only be done with proper equipment. It is recommended that contouring be gradual and that great care be used to avoid any notching, scratching or reverse bending of the devices when contouring. Alterations will produce defects in surface finish and internal stresses that may become the focal point for eventual breakage of the implant.

2. REMOVAL OF THE IMPLANT AFTER HEALING. Metallic implants can loosen, fracture, corrode, migrate or possibly increase the risk of infection, cause pain or stress shield bone even after healing, particularly in young, active patients. The surgeon should carefully weigh the risk versus benefits when deciding whether to remove the implant. Implant removal should be followed by adequate post-operative management to avoid refracture. If the patient is older and has a low activity level, the surgeon may choose not to remove the implant thus eliminating the risk involved with a second surgery.

3. ADEQUATELY INSTRUCT THE PATIENT. Post-operative care and the patient's ability and willingness to follow instructions are two of the most important aspects of successful bone healing. The patient must be made aware of the limitations of the implant and follow the post-operative care regimen as instructed by his or her physician.
4. DO NOT ALTER OR MODIFY ANY NEX-LINK OCT OCCIPITAL CERVICAL PLATING SYSTEM INSTRUMENT. REPAIRS SHOULD ONLY BE ACCOMPLISHED BY THE MANUFACTURER. The Nex-Link OCT Occipital Cervical Plating System is only a temporary implant used for the correction and stabilization of the cervical spine. A successful result is not achieved in every surgical case. Bone grafting must be part of the spinal fusion procedure in which the Nex-Link OCT Occipital Cervical Plating System is used.

5. All implants and some instruments are intended for single use only; refer to the product label to determine if the instrument is intended for single use only. Single use devices should not be reused. Possible risks associated with re-use of single use devices include:
 a) Mechanical malfunction
 b) Transmission of infectious agents

Re-operation to remove or replace implants may be required at any time due to medical reasons or device failure. If corrective action is not taken, complications may occur.

These complications may include but are not limited to:

1. Device corrosion with localized tissue reaction and pain
2. Device migration, which may result in injury to soft tissue, visceral organs or joints
3. Loosening or disassembly of implant resulting in additional injury
4. Bending, loosening or breaking of the implant making removal difficult, impractical or impossible
5. Abnormal sensations, discomfort or pain
6. Increased risk of infection
7. Bone loss due to stress shielding

Pre-operative and operating procedures including knowledge of surgical techniques, good reduction and proper selection and placement of the implant are important considerations in the successful utilization of the Nex-Link OCT Occipital Cervical Plating System by the surgeon.

Proper patient selection and the patient’s ability to comply with physician instructions and follow a prescribed treatment regimen will greatly affect the results. It is important to screen patients and select optimal therapy given physical and/or mental activity requirements and/or limitations. If a surgical candidate exhibits any contraindication or is predisposed to any contraindication, DO NOT USE the Nex-Link OCT Occipital Cervical Plating System.

Patients who smoke have been shown to have an increased incidence of non-unions. These patients should be advised of this fact and warned of this consequence. Patients with poor bone quality are also poor candidates for surgery.
Solutions by the people of Zimmer Spine.

You are devoted to helping your patients reduce their pain and improve their lives. And the people of Zimmer Spine are devoted to you. We are dedicated to supporting you with best-in-class tools, instruments and implants. We are driven by the opportunity to share our unrivaled education and training. We are committed partners who will do everything in our power to assist you in your quest to provide the absolute best in spinal care. And we can be counted on always to act with integrity as ethical partners who are worthy of your trust. We are the people of Zimmer Spine.

Disclaimer:
This documentation is intended exclusively for physicians and is not intended for laypersons.

Information on the products and procedures contained in this document is of a general nature and does not represent and does not constitute medical advice or recommendations. Because this information does not purport to constitute any diagnostic or therapeutic statement with regard to any individual medical case, each patient must be examined and advised individually, and this document does not replace the need for such examination and/or advice in whole or in part.

Please refer to the package inserts for important product information, including, but not limited to, indications, contraindications, warnings, precautions, and adverse effects.

Caution: Federal (USA) law restricts this device to sale by or on the order of a physician. Please see the product Instructions for Use for a complete listing of the indications, contraindications, warnings, precautions and adverse effects.

Manufactured by:
Zimmer Spine
7375 Bush Lake Road
Minneapolis, MN 55439
800.655.2614
zimmerspine.com

L1490 Rev. C (8515-1040-00)
© 2016 Zimmer Spine, Inc. (04/16)